
Sign Language Translation
Pranav Balaji

CSIS Department
BITS Pilani, Hyderabad Campus

Hyderabad, India
f20190040@hyderabad.bits-pilani.ac.in

Vraj Gandhi
CSIS Department

BITS Pilani Hyderabad Campus
Hyderabad, India

f20190158@hyderabad.bits-pilani.ac.in

Abhinav Rahul
EEE Department

BITS Pilani, Hyderabad Campus
Hyderabad, India

f20191354@hyderabad.bits-pilani.ac.in

Fenil Bardoliya
CSIS Department

BITS Pilani, Hyderabad Campus
Hyderabad, India

f20190152@hyderabad.bits-pilani.ac.in

Kenute Joseph
CSIS Department

BITS Pilani, Hyderabad Campus
Hyderabad, India

f20190119@hyderabad.bits-pilani.ac.in

Suchit Uppala
CSIS Department

BITS Pilani, Hyderabad Campus
Hyderabad, India

f20190115@hyderabad.bits-pilani.ac.in

Abstract—The hearing and speech impaired community
doesn’t have much technology that connects them with the rest
of the world because the concept of Sign Language detection
is overlooked. Machine Learning and Image classifiers can be
used via which the computer can recognize sign languages,
and can then be interpreted by people. Convolutional Neural
Networks (CNNs) can be used to process static images, and
sequence2sequence models can be used to process videos. In this
paper we fine-tune the pre-trained Inception v3 on a dataset
consisting of static images with sign alphabets captured by an
RGB camera. We later extend the problem by translating video
sequences from the Phoenix14T dataset using a transformer
encoder-decoder architecture.

Index Terms—Sign Language Translation, Image processing,
Video processing, Inception V3, T5

I. IMAGE TRANSLATION

A simpler problem to tackle before moving on the main task
of video translation is image translation. The first part of this
paper, static sign recognition can be termed as a classification
task. Here, the input is an image consisting of a hand signing
an alphabet, and the output is a probability distribution over
the 29 classes (26 alphabets + del + space + nothing). We
implemented [1] for this problem.

II. DATASET AND PREPROCESSING

This kaggle dataset was used instead of the dataset used
in [1] as it had 3000 images for each alphabet whereas the
latter had only 63 for each alphabet. It consists of static
sign language gestures (letters) captured on an RGB camera.
The Inception v3 model cannot process images smaller than
299x299. Since the dataset consisted of 200x200 size images,
we resized them to the appropriate dimensions using linear
interpolation. Following industry standards, we then split the
images into training , testing and validation sets

III. CNN ARCHITECTURE

The reason we used CNNs for this is that in a normal neural
network, when we feed an image as an input, each pixel in the
image will be connected to a neuron in the input layer. This

leads to a extremely large number of neurons and subsequently
a large number of weights to be updated. In case of CNNs,
the layers are organized in 3 dimensions: height, width and
depth. The neurons in one layer do not connect to all the
neurons in the next layer but only to a small region of it. The
final output will be reduced to a single vector of probability
scores, organized along the depth dimension. In any image,
there are a lot of pixels that carry unwanted information. CNNs
work around this by performing a series of operations such as
convolution and pooling to repeatedly reduce the dimension of
a patch of image by using filters. Another advantage of CNNs
is the translational and rotational invariance they provide.

IV. INCEPTION V3 ARCHITECTURE

For predicting Image2Text, we use the Inception-v3 [2]
model which is a pre-trained CNN model used for image
recognition. This model has 48 layers and has shown an
accuracy greater than 78.1 on the ImageNet dataset. We use
the Inception-v3 pre-trained model and train it on our dataset.

V. EXPERIMENTAL SETUP

A. Loss

The standard Cross entropy loss is used as is common in
classification problems.

B. Training

The pre-trained Inception v3 model was used, but the final
linear layer was replaced to a new layer that maps from the
previous output dimension to num classes (In this case 29).
The Adam optimizer with a learning rate of 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 10-8 was used with no weight decay. The
model was trained on the entire training dataset with a batch
size of 32 for 2 epochs.

https://www.kaggle.com/datasets/grassknoted/asl-alphabet


VI. RESULTS AND DISCUSSION

Dataset Accuracy

train 98.83%
val 98.74%
test 97.59%

As shown in the table, we have achieved an accuracy of
97.58% on the test set, which is almost 5% greater than the
paper we implemented. This can mostly be attributed to a
larger dataset and more training time.

VII. VIDEO TRANSLATION

Sign language translation is a non-trivial task of interpreting
text sequences from video sequences. Like other translation
problems, the input word order is usually not the same as
the output word order. Deaf people cannot communicate by
using the signs of alphabets. Instead they have a complex
set of gestures to convey sentences with proper grammar. To
solve that problem, we will now translate the videos containing
sign language gestures into their corresponding sentences. So
as a step towards solving the true real world problem we
seek to process these gestures and not just single images.
So now our problem statement is changed from translating
images to translating videos and predicting proper syntax of
the translated words to create a coherent sentence. Both the
input and the output space of the new problem are different.
This is no longer a classification problem but rather a Seq2Seq
problem.

[3] addresses this problem using RNNs. An improvement
over this would be using transformers instead of LSTMs and
that is what we did.

The new model will have an encoder-decoder transformer
with attention mechanism architecture which takes output of
the CNN as its input. This model will predict the gloss and
text of the video and compare it to the ground truth.

VIII. DATASET AND PREPROCESSING

We used the PHOENIX14T dataset introduced in [3] for
training and evaluating the model. It consists of 7046 videos
for training, 519 videos for validation and 642 videos for
testing. Each instance of example consists of three fields:

1) CNN embeddings of each frame in the video as a
PyTorch tensor

2) Ground truth Glosses for the video
3) Ground truth Translation

Glosses are a form of human-readable intermediate represen-
tation of the sign videos. A gloss consists of a sequence of
words in the order that they were signed, without consideration
for grammar. In contrast, the translation is a natural language
sentence. The sign videos are in German Sign Language and
the Glosses and translation are in German.

IX. ARCHITECTURE

We use an attention based transformer encoder-decoder
architecture first proposed in [4] shown in fig 1 which to accept
the last layer of the CNN for the embeddings of the video

frames which is trained to predict the German translation of
the signs in the frames of those videos.

The end-to-end model consists of 3 parts:

1) CNN: Takes in raw pixel data of frames and generates
embeddings.

2) Transformer encoder layer: Takes the embeddings pro-
duced by the previous layer and assign attention to these
embeddings before passing it on to the decoder layer.

3) Transformer decoder layer: Takes the attended embed-
dings and autoregressively generates the final text trans-
lation word-by-word.

Apart from these main layers, there is another utility linear
layer which transforms the transformer encoder output to
a probability distribution over gloss vocabulary, which is
explained in the next section

X. LOSS FUNCTION

Inspired from [3], we use a two level loss.

1) Gloss loss (Lg): Inspired from [3], the encoder outputs
are passed through a linear layer which maps each frame
embedding to a probability distribution over the entire
gloss vocabulary. This enables the model to predict
a gloss per frame. Since the number of frames are
numerous compared to the ground truth glosses, CTC
Loss is used to calculate this loss.

2) Translation loss (Lt): The decoder has an inbuilt linear
layer which maps from the decoded embeddings to the
german vocabulary. These predicted terms are passed
through a atndard Cross Entropy loss function against
the ground truth translation as is common practise in
Natural Language Processing reseach.

The two losses are weighed relatively and added together to
produce the final loss with which to perform backpropagation.

L = λgLg + (1− λg)Lt

Where λg is a hyperparameter to by tuned.

XI. EXPERIMENTAL SETUP

The following encoder-decoder architectures were used for
building the model:

1) BERT [5] pre-trained german-uncased encoder with our
own implementation of a decoder

2) Our own implementation of both encoder and decoder
3) Pre-trained T5-small [6] with encoder-decoder layers.

A. Tokenization

Any model that deals with text needs to have a tokenizer that
maps words or parts of words to numbers The dataset already
has the trained CNN layers of the images, so we needed to
pass these frame embeddings through the encoder and then
the subsequent output through the decoder.



Fig. 1. Transformer architecture

B. Configurations

We trained and tested the model using the following 5
configurations:

1) Configuration 1:
a) λg = 0.01
b) dropout rate = 0.1

2) Configuration 2:
a) λg = 0.01
b) dropout rate = 0.25

3) Configuration 3:
a) λg = 0.05
b) dropout rate = 0.1

4) Configuration 4:
a) λg = 0.1
b) dropout rate = 0.1

5) Configuration 5:
a) λg = 0.5
b) dropout rate = 0.1

The models’ learning rate was set to 10-4 and the extra layers’
learning rate was set to 5x10-3. The models were trained for
15 epochs and were tested after every 300 batches of training.

XII. RESULTS AND DISCUSSION

We printed the gloss values from the encoder before passing
them through the decoder to see if the glosses were coherent

or not. The first two models gave only blank values even on
training them with the same gloss values 100 times each. This
meant that the BLEU-4 score would be near zero as even
increasing the learning rate did not alter the output.

The model we created using the t5-small pre-trained model
gave coherent glosses instead of just blanks. So we proceeded
to train the model using the 5 configurations mentioned above.

Fig 2 shows the BLEU-4 scores for each configuration for
the train, validation and test sets. Configurations 1, 3 and 4
show comparable performance while config 2 demonstrates
slow learning. Config 5 does not perform very well and this
can be attributed to overweighing the gloss loss compared
to translation loss. Fig 3 shows the training loss history for
config 3. Since config 3 was the most promising, we ran
this config for double the number of epochs (30) and tested
the bleu scores every epoch. Fig 4 shows the results of this
experiment. Although the training performance is going up
drastically compared to the validation and testing performance,
we have not reached the point of overfitting since they are not
worsening.

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4

train 51.06 30.75 20.64 15.29
val 47.50 26.31 17.60 13.19
test 44.48 24.95 16.45 12.75



XIII. CONCLUSION AND FUTURE WORK

In this paper, we first created a model to predict alphabets
from images of the corresponding sign languages and got
an accuracy of 92.86%. Next we set our eyes on translating
videos containing sign language gestures to sentences using
a CNN + (Encoder-Decoder with attention Transformer)
architecture. This was an improvement over the CNN+RNN
architecture used previously. We tried to implement the
model using pre-trained BERT and also our own encoder
and decoder but these two models failed to generate coherent
glosses. The model that we created using the t5-small
pre-trained model gave gloss outputs that were coherent and
as such we trained the model separately with 5 configurations
and trained the model further for the configuration with the
highest BLEU-4 scores. On looking at the total loss graph,
we find that even this model does not converge after training
for 30 epochs. We strongly believe that using a larger model
and training it for longer using a larger dataset will produce
must stronger results. We leave this for future implementation
as we do not currently have the resources required to test
this.

REFERENCES

[1] A. Das, S. Gawde, K. Suratwala, and D. Kalbande, “Sign language
recognition using deep learning on custom processed static gesture
images,” pp. 1–6, 2018.

[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2818–
2826, 2016.

[3] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, “Neural
sign language translation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7784–7793, 2018.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[6] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a
unified text-to-text transformer,” arXiv preprint arXiv:1910.10683, 2019.



Fig. 2. BLEU history for all configs



Fig. 3. Training loss history for config 3

Fig. 4. Training loss history for config 3 ran for 30 epochs



Fig. 5. Contributions


	Image translation
	Dataset and preprocessing
	CNN architecture
	Inception V3 architecture
	Experimental setup
	Loss
	Training

	Results and discussion
	Video Translation
	Dataset and preprocessing
	Architecture
	Loss function
	Experimental Setup
	Tokenization
	Configurations

	Results and Discussion
	Conclusion and Future work
	References

