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ABSTRACT

Redox Flow Batteries have risen in popularity in recent years as a

large-scale energy storage solution. Efficiency of the battery storage

system relies on minimizing power loss, which in turn is dependent on

predicting VRFB stack temperature and keeping it within a safe limit so as

to prevent thermal precipitation. We have predicted variation of stack

temperature with time duration of a practical 1kW 6kWh VRFB system

dataset under four different operating current levels (40, 45, 50, and 60A)

keeping a constant electrolyte flow rate of 180 ml/sec. In this report, we

have used both Polynomial Regression and LSTM methods to accurately

predict the stack temperature of the battery during charging and

discharging profiles. The prediction accuracy of the algorithm has been

tested using regression metrics such as Root Mean Square Error (RMSE),

Mean Absolute Error (MAE) and Correlation Coefficient (R2). The

algorithm performance and the parameter performance graphs have also

been plotted for visualization of results.
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INTRODUCTION

In recent years, there has been a massive transition from traditional fossil

fuel sources to renewable energy sources for electricity generation.

However, although these renewable energy sources have the advantage of

being low carbon energy sources, there are a number of challenges. Firstly,

they are relatively inflexible in terms of the fact that you cannot simply

increase power supply on demand. They are also intermittent in nature,

and often out of alignment with electricity demand, thus requiring excess

capacity to stabilize supply. Sometimes there can even be an excess of

supply, more than the grid can handle, leading to wasted electricity. All the

above mentioned problems call for an efficient high capacity energy

storage system to help balance the supply and demand issues.

One such energy storage solution is a Redox Flow battery. In this battery,

the amount of energy stored is related to the amount of liquid electrolyte

which is often contained in the external tanks. This electrolyte is then

pumped through a battery stack where power can be put into or taken out

of the fluids by changing their oxidation states. This design makes them

quite flexible and modular. If you need more energy you can increase the

size of the tanks and if you need more power you can increase the number

of stacks. Also because the electrolyte is a liquid, the system tends to be

more durable, safe, and has a longer lifetime.
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Now, there are different types of redox flow batteries based on their

chemistry. The ones that have been commercialized so far are Zn/Br

systems, Fe/Cr systems and All Vanadium systems. The ideal

characteristics to look for when choosing a RFB are high reactivity for

more efficiency, and a large stable voltage window. Out of these, the most

optimal system would be the Vanadium Redox Flow Battery (VRFB).

In VRFB, both the anolyte and catholyte are made up of Vanadium

electrolytes, which is possible due to the fact that Vanadium has 4 useful

oxidation states. Here, the V4+/V5+ redox couples are used for the

positive electrode and the V2+/V3+ redox couples are used for the

negative electrode. The electrolyte solution is composed of Sulfuric Acid.

The advantage of this system is therefore high theoretical lifetimes since

crossover effects are not irreversible considering that Vanadium is used on

both sides and can thus be rebalanced. There are also limited unwanted

hydrogen evolution side reactions at the anode leading to higher stability.

Also, the high relative reactivity of the redox couples means that

expensive catalysts aren’t required.

In the case of using VRFB’s for large scale energy storage, we need the

system to be power efficient. In order to enhance energy and power

performance, a novel cell design was introduced by Al-Yasiri et al..

Thermal modeling is another critical factor in building a battery

management system. A thermal model of VRFB was initially presented by

Tang et al. which was based on thermodynamic equations and mass

transfer theory. This is necessary as V2+/V3+ precipitation occurs at

temperatures below 5°C and V5+ precipitation occurs at temperatures
7



above 40°C, which can lead to membrane degradation and hence a

decrease in battery efficiency. Thus controlling battery temperature is an

important aspect in the VRFB design for effective and safe operation.

Before we can optimize the battery temperatures, we must first be able to

predict the VRFB stack temperatures accurately. In this paper, prediction

of temperatures during charging and discharging was done using both

Polynomial Regression and LSTM methods under different operating

current levels and a fixed flow rate.
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IMPLEMENTATION

The experimental data for charging and discharging profiles for 4 different

stack currents (40A, 45A, 50A, 60A) was used to predict variation of

VRFB stack temperatures with time for a flow rate of 180 ml/sec.

Polynomial Regression:

We first read all the csv files and renamed the columns for the 4

discharging datasets as they did not have any column names. We

transformed the data into a dataframe containing one feature, namely

‘Hours’. Then we split the dataset into a 80:20 split for training and testing

respectively and randomly shuffled the data.

We created polynomial regression models for degrees 0-9 and

implemented it on the dataset. We used gradient descent to update the

weights at each iteration.

The MSE error was calculated every 5000 iterations and the model was

run for a total of 50000 iterations.

The final MAE, RMSE and R2 errors were calculated and tabulated for

each of the polynomial functions of degrees 0-9.

LSTM:

We read all the csv files and renamed the columns for the 4 discharging

datasets as they did not have any column names just like in the Polynomial

Regression Model. We used the ‘train_test_split’ function within
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Scikit-learn to split the dataset 70:30 for training and testing respectively.

We did not shuffle the data in this case as LSTM’s need sequential data for

performing time series prediction.

We reshaped the training and testing temperature data and performed

Min-Max scaling using the ‘MinMaxScaler’ function within Scikit-learn

so as to bring all temperature values within the range [0,1]. Min-Max

scaling is performed when it is required to capture small variance in

features and also for sparse data where the zero value needs to be

preserved.

We then used the ‘TimeseriesGenerator’ module within Tensorflow to

generate a time series with number of features as 1 and number of inputs

as 5. Essentially this means that the model will use 5 values from the data

to predict the 6th value in the data.

We then created an LSTM model having 100 hidden layers which takes an

input of shape (5,1) and uses a ReLU activation function at the output

layer finally giving an output of size 1. The Adam optimizer with a

learning rate of 0.001,  β1 = 0.9, β2 = 0.999,  ϵ = 10-8 was used with no

weight decay. MSE error was used as the loss function.

The model was then trained on the training dataset for 50 epochs and the

loss per epoch was plotted.

We then used the model for prediction over the length of the entire dataset

and the predicted values were stored in an array before being rescaled to

the original size. The array was added later as an extra column within the

dataset.
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The final MSE, RMSE and R2 errors were calculated and tabulated. We

then plotted the algorithm performance and the parameter performance

graphs.
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RESULTS

To analyze the accuracy of the model, we use 3 different error metrics,

namely: Root Mean Square Error (RMSE), Mean Absolute Error (MAE)

and Correlation Coefficient (R2).

Polynomial Regression:

Table for Performance in case of charging:

Degree 0:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 1.000000054188 1.000000055486 1.000000058641 1.000000055149

R2 -1.0837693e-07 -1.1097319e-07 -1.1728365e-07 -1.1029845e-07

MAE 0.79636311893 0.801527965507 0.806643076407 0.795542684259

Degree 1:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.261820765328 0.233474973369 0.303533285157 0.336275377946

R2 0.931449886842 0.945489436810 0.907867544801 0.886918870187

MAE 0.206475791043 0.169643727601 0.217558073105 0.266074783454

Degree 2:-
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Error
Metric

Current

40A 45A 50A 60A

RMSE 0.205557362438 0.216289308930 0.258262037772 0.267785789811

R2 0.957746170747 0.953218934842 0.933300719845 0.928290770774

MAE 0.145260037388 0.140918640798 0.169225480306 0.187461635800

Degree 3:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.196662257413 0.213183008453 0.249401050146 0.261860366255

R2 0.961323956508 0.954553004906 0.937799116185 0.931429148584

MAE 0.130870066568 0.132380416088 0.161851338266 0.186646266834

Degree 4:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.195386430623 0.212057479148 0.251763094276 0.255061900489

R2 0.961824142728 0.955031625537 0.936615344360 0.934943426918

MAE 0.127657159399 0.132614100533 0.165729052243 0.177712556956

Degree 5:-
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Error
Metric

Current

40A 45A 50A 60A

RMSE 0.195184030533 0.212900356460 0.246154103094 0.257549830532

R2 0.961903194224 0.954673438219 0.939408157529 0.933668084792

MAE 0.127820553596 0.132176174674 0.156943206516 0.180971194849

Degree 6:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.195586122389 0.212631674367 0.249128205431 0.258178498011

R2 0.961746068728 0.954787771055 0.937935137258 0.933343863164

MAE 0.128729361668 0.132075218875 0.161732632856 0.181767308904

Degree 7:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.196579219502 0.215318387015 0.246001621343 0.260355095727

R2 0.961356610459 0.953637992213 0.939483202296 0.932215224128

MAE 0.130672156915 0.132803716934 0.156690198196 0.184498457729

Degree 8:-
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Error
Metric

Current

40A 45A 50A 60A

RMSE 0.196859206887 0.213491271545 0.253044708111 0.257538233717

R2 0.961246452663 0.954421476973 0.935968375696 0.933674058173

MAE 0.131220560208 0.132506748650 0.167142818279 0.180123947075

Degree 9:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.194320664266 0.213420250161 0.167293886478 0.257324587811

R2 0.962239479438 0.954451796820 0.935895413791 0.933784056507

MAE 0.126203424178 0.132271059049 0.167293886478 0.180724456040

Table for Performance in case of discharging:

Degree 0:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 1.000000058204 1.000000055225 1.000000057462 1.000000055997

R2 -1.1640934e-07 -1.1045065e-07 -1.1492491e-07 -1.11995420e-07
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MAE 0.770008808551 0.787162693602 0.792983024100 0.770988459230

Degree 1:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.303247155681 0.272996827443 0.312423058118 0.341918538934

R2 0.908041162571 0.925472732205 0.902391832755 0.883091712732

MAE 0.241062627177 0.204512212672 0.222127963916 0.266723442306

Degree 2:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.227309483468 0.206544400886 0.255822700034 0.256984260024

R2 0.948330398725 0.957339410462 0.934554746146 0.933959090099

MAE 0.164821701865 0.146087555100 0.164012651553 0.178320681513

Degree 3:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.205645552810 0.193170974883 0.250050009910 0.248064133493
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R2 0.957709906609 0.962684974462 0.937474992543 0.938464185673

MAE 0.135642152051 0.133084776897 0.160891533394 0.176436525171

Degree 4:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.206233199757 0.196277573161 0.253933664239 0.249087312706

R2 0.957467867317 0.961475114273 0.935517694166 0.937955510648

MAE 0.137017529412 0.135538296143 0.165743781008 0.177457883947

Degree 5:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.207617533551 0.188109565125 0.252404796675 0.243459959915

R2 0.956894959762 0.964614791508 0.936291818615 0.940727247918

MAE 0.138723584089 0.126613644975 0.164449738500 0.169574898223

Degree 6:-

Error
Metric

Current
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40A 45A 50A 60A

RMSE 0.204035295128 0.192962434206 0.248973038305 0.249053722833

R2 0.958369598341 0.962765498985 0.938012426196 0.937972243142

MAE 0.135149941818 0.132223665531 0.158905892604 0.177484027333

Degree 7:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.206231810842 0.187112701449 0.248591052542 0.250033653187

R2 0.957468440196 0.964988836956 0.938202488595 0.937483172273

MAE 0.137107114912 0.126192688492 0.158658594923 0.178427523078

Degree 8:-

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.205996579914 0.186913950680 0.250532524627 0.249762565095

R2 0.957565409063 0.965063175040 0.937233454103 0.937618661076

MAE 0.136121614675 0.125216421621 0.161687860071 0.178169665331

Degree 9:-
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Error
Metric

Current

40A 45A 50A 60A

RMSE 0.206375854836 0.193461336996 0.253160743382 0.251233872041

R2 0.957409006540 0.962572711087 0.935909638010 0.936881541539

MAE 0.137476199601 0.131813741665 0.164886502307 0.179716391834

LSTM:

Table for Performance in case of charging:

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.342742386503 0.502422332494 0.527558536624 0.961910117138

R2 0.993120516077 0.990662777835 0.989705123731 0.987888394547

MAE 0.173379036838 0.291018920655 0.346041830620 0.370003210320

Table for Performance in case of discharging:

Error
Metric

Current

40A 45A 50A 60A

RMSE 0.309661595769 0.407636375878 0.562765759471 0.776349582986

R2 0.995161027621 0.994857159205 0.992715938415 0.993098315006

MAE 0.246384419321 0.207762836428 0.173442373104 0.175605433060
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Algorithm Performance Graphs:

1) 40A Charging:-

2) 45A Charging:-
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3) 50A Charging:-
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4) 60A Charging:-

5) 40A Discharging:-
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6) 45A Discharging:-
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7) 50A Discharging:-

8) 60A Discharging:-
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Parameter Performance Graphs:

For the actual values, we have taken only 100 points for charging and 150
points for discharging randomly so as to make the visualization of actual
and predicted points more distinct.

1) 40A Charging:-
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2) 45A Charging:-
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3) 50A Charging:-

4) 60A Charging:-
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5) 40A Discharging:-
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6) 45A Discharging:-

7) 50A Discharging:-
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8) 60A Discharging:-

30



CONCLUSION

Upon training the Polynomial Regression model on the datasets and

calculating R2 error, we observed that the best degree polynomial function

for each of the datasets w.r.t R2 error are as follows:

1) 40A Charging = Degree 9 (0.962239479438)

2) 45A Charging = Degree 4 (0.955031625537)

3) 50A Charging = Degree 7 (0.939483202296)

4) 60A Charging = Degree 4 (0.934943426918)

5) 40A Discharging = Degree 6 (0.958369598341)

6) 45A Discharging = Degree 8 (0.965063175040)

7) 50A Discharging = Degree 7 (0.938202488595)

8) 60A Discharging = Degree 5 (0.940727247918)

In the case of LSTM, the best case R2 error that we achieved was

0.995161027621 (40A Discharging dataset).

The results indicate that the LSTM model performs far better overall as

compared to the Polynomial Regression model for predicting the VRFB

stack temperature.

In the future, we plan on further optimizing the temperature with respect to

flow rate using these algorithms.
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