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ABSTRACT

Redox Flow Batteries have risen in popularity in recent years as a
large-scale energy storage solution. Efficiency of the battery storage
system relies on minimizing power loss, which in turn is dependent on
predicting VRFB stack temperature and keeping it within a safe limit so as
to prevent thermal precipitation. We have predicted variation of stack
temperature with time duration of a practical 1kW 6kWh VRFB system
dataset under four different operating current levels (40, 45, 50, and 60A)
keeping a constant electrolyte flow rate of 180 ml/sec. In this report, we
have used both Polynomial Regression and LSTM methods to accurately
predict the stack temperature of the battery during charging and
discharging profiles. The prediction accuracy of the algorithm has been
tested using regression metrics such as Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Correlation Coefficient (R2). The
algorithm performance and the parameter performance graphs have also

been plotted for visualization of results.
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INTRODUCTION

In recent years, there has been a massive transition from traditional fossil
fuel sources to renewable energy sources for electricity generation.
However, although these renewable energy sources have the advantage of
being low carbon energy sources, there are a number of challenges. Firstly,
they are relatively inflexible in terms of the fact that you cannot simply
increase power supply on demand. They are also intermittent in nature,
and often out of alignment with electricity demand, thus requiring excess
capacity to stabilize supply. Sometimes there can even be an excess of
supply, more than the grid can handle, leading to wasted electricity. All the
above mentioned problems call for an efficient high capacity energy

storage system to help balance the supply and demand issues.

One such energy storage solution is a Redox Flow battery. In this battery,
the amount of energy stored is related to the amount of liquid electrolyte
which is often contained in the external tanks. This electrolyte is then
pumped through a battery stack where power can be put into or taken out
of the fluids by changing their oxidation states. This design makes them
quite flexible and modular. If you need more energy you can increase the
size of the tanks and if you need more power you can increase the number
of stacks. Also because the electrolyte is a liquid, the system tends to be

more durable, safe, and has a longer lifetime.



Now, there are different types of redox flow batteries based on their
chemistry. The ones that have been commercialized so far are Zn/Br
systems, Fe/Cr systems and All Vanadium systems. The ideal
characteristics to look for when choosing a RFB are high reactivity for
more efficiency, and a large stable voltage window. Out of these, the most

optimal system would be the Vanadium Redox Flow Battery (VRFB).

In VRFB, both the anolyte and catholyte are made up of Vanadium
electrolytes, which is possible due to the fact that Vanadium has 4 useful
oxidation states. Here, the V4+/V5+ redox couples are used for the
positive electrode and the V2+/V3+ redox couples are used for the
negative electrode. The electrolyte solution is composed of Sulfuric Acid.
The advantage of this system is therefore high theoretical lifetimes since
crossover effects are not irreversible considering that Vanadium is used on
both sides and can thus be rebalanced. There are also limited unwanted
hydrogen evolution side reactions at the anode leading to higher stability.
Also, the high relative reactivity of the redox couples means that

expensive catalysts aren’t required.

In the case of using VRFB’s for large scale energy storage, we need the
system to be power efficient. In order to enhance energy and power
performance, a novel cell design was introduced by Al-Yasiri et al..
Thermal modeling is another critical factor in building a battery
management system. A thermal model of VRFB was initially presented by
Tang et al. which was based on thermodynamic equations and mass
transfer theory. This is necessary as V2+/V3+ precipitation occurs at

temperatures below 5°C and V5+ precipitation occurs at temperatures



above 40°C, which can lead to membrane degradation and hence a
decrease in battery efficiency. Thus controlling battery temperature is an

important aspect in the VRFB design for effective and safe operation.

Before we can optimize the battery temperatures, we must first be able to
predict the VRFB stack temperatures accurately. In this paper, prediction
of temperatures during charging and discharging was done using both
Polynomial Regression and LSTM methods under different operating

current levels and a fixed flow rate.



IMPLEMENTATION

The experimental data for charging and discharging profiles for 4 different
stack currents (40A, 45A, 50A, 60A) was used to predict variation of

VRFB stack temperatures with time for a flow rate of 180 ml/sec.
Polynomial Regression:

We first read all the csv files and renamed the columns for the 4
discharging datasets as they did not have any column names. We
transformed the data into a dataframe containing one feature, namely
‘Hours’. Then we split the dataset into a 80:20 split for training and testing
respectively and randomly shuffled the data.

We created polynomial regression models for degrees 0-9 and
implemented it on the dataset. We used gradient descent to update the

weights at each iteration.

The MSE error was calculated every 5000 iterations and the model was

run for a total of 50000 iterations.

The final MAE, RMSE and R2 errors were calculated and tabulated for

each of the polynomial functions of degrees 0-9.

LSTM:

We read all the csv files and renamed the columns for the 4 discharging
datasets as they did not have any column names just like in the Polynomial

Regression Model. We used the ‘train_test split’ function within



Scikit-learn to split the dataset 70:30 for training and testing respectively.
We did not shuffle the data in this case as LSTM’s need sequential data for

performing time series prediction.

We reshaped the training and testing temperature data and performed
Min-Max scaling using the ‘MinMaxScaler’ function within Scikit-learn
so as to bring all temperature values within the range [0,1]. Min-Max
scaling is performed when it is required to capture small variance in
features and also for sparse data where the zero value needs to be

preserved.

We then used the ‘TimeseriesGenerator’ module within Tensorflow to
generate a time series with number of features as 1 and number of inputs
as 5. Essentially this means that the model will use 5 values from the data

to predict the 6th value in the data.

We then created an LSTM model having 100 hidden layers which takes an
input of shape (5,1) and uses a ReLLU activation function at the output
layer finally giving an output of size 1. The Adam optimizer with a
learning rate of 0.001, 1 =0.9, B2 =0.999, €= 10-8 was used with no

weight decay. MSE error was used as the loss function.

The model was then trained on the training dataset for 50 epochs and the

loss per epoch was plotted.

We then used the model for prediction over the length of the entire dataset
and the predicted values were stored in an array before being rescaled to
the original size. The array was added later as an extra column within the

dataset.
10



The final MSE, RMSE and R2 errors were calculated and tabulated. We
then plotted the algorithm performance and the parameter performance

graphs.
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RESULTS

To analyze the accuracy of the model, we use 3 different error metrics,

namely: Root Mean Square Error (RMSE), Mean Absolute Error (MAE)

and Correlation Coefficient (R?).

Polynomial Regression:

Table for Performance in case of charging:

Degree 0:-
Error Current
Metric
40A 45A 50A 60A
RMSE 1.000000054188 | 1.000000055486 | 1.000000058641 | 1.000000055149
R2 -1.0837693e-07 |-1.1097319e-07 |-1.1728365e-07 |-1.1029845e-07
MAE 0.79636311893 0.801527965507 1 0.806643076407 |10.795542684259
Degree 1:-
Error Current
Metric
40A 45A 50A 60A
RMSE 0.261820765328 |0.233474973369 | 0.303533285157 [0.336275377946
R2 0.931449886842 | 0.945489436810 | 0.907867544801 | 0.886918870187
MAE 0.206475791043 |1 0.169643727601 | 0.217558073105 | 0.266074783454

Degree 2:-
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Error Current
Metric

40A 45A 50A 60A
RMSE 0.205557362438 1 0.216289308930 | 0.258262037772 |0.267785789811
R2 0.957746170747 |1 0.953218934842 |0.933300719845 [ 0.928290770774
MAE 0.145260037388 | 0.140918640798 |0.169225480306 | 0.187461635800
Degree 3:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.196662257413 1 0.213183008453 |1 0.249401050146 | 0.261860366255
R2 0.961323956508 | 0.954553004906 | 0.937799116185 |0.931429148584
MAE 0.130870066568 | 0.132380416088 | 0.161851338266 | 0.186646266834
Degree 4:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.195386430623 | 0.212057479148 | 0.251763094276 | 0.255061900489
R2 0.961824142728 10.955031625537 10.936615344360 | 0.934943426918
MAE 0.127657159399 | 0.132614100533 | 0.165729052243 [ 0.177712556956

Degree 5:-
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Error Current
Metric

40A 45A 50A 60A
RMSE 0.195184030533 1 0.212900356460 | 0.246154103094 | 0.257549830532
R2 0.961903194224 | 0.954673438219 | 0.939408157529 [ 0.933668084792
MAE 0.127820553596 | 0.132176174674 | 0.156943206516 | 0.180971194849
Degree 6:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.195586122389 | 0.212631674367 | 0.249128205431 | 0.258178498011
R2 0.961746068728 | 0.954787771055 | 0.937935137258 | 0.933343863164
MAE 0.128729361668 | 0.132075218875 [ 0.161732632856 [ 0.181767308904
Degree 7:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.196579219502 | 0.215318387015 | 0.246001621343 |0.260355095727
R2 0.961356610459 ] 0.953637992213 1 0.939483202296 | 0.932215224128
MAE 0.130672156915 ] 0.132803716934 | 0.156690198196 | 0.184498457729

Degree 8:-
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Error Current
Metric

40A 45A 50A 60A
RMSE 0.196859206887 1 0.213491271545 |0.253044708111 |0.257538233717
R2 0.961246452663 | 0.954421476973 | 0.935968375696 | 0.933674058173
MAE 0.131220560208 ] 0.132506748650 | 0.167142818279 |0.180123947075
Degree 9:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.194320664266 | 0.213420250161 | 0.167293886478 | 0.257324587811
R2 0.962239479438 | 0.954451796820 |0.935895413791 |0.933784056507
MAE 0.126203424178 1 0.132271059049 | 0.167293886478 | 0.180724456040

Table for Performance in case of discharging:

Degree 0:-
Error Current
Metric
40A 45A 50A 60A
RMSE 1.000000058204 | 1.000000055225 | 1.000000057462 | 1.000000055997

RZ

-1.1640934e-07

-1.1045065e-07

-1.1492491e-07

-1.11995420e-07
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MAE 0.770008808551 1 0.787162693602 |0.792983024100 | 0.770988459230
Degree 1:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.303247155681 | 0.272996827443 |0.312423058118 | 0.341918538934
R2 0.908041162571 10.925472732205 |0.902391832755 [ 0.883091712732
MAE 0.241062627177 10.204512212672 | 0.222127963916 | 0.266723442306
Degree 2:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.227309483468 | 0.206544400886 | 0.255822700034 | 0.256984260024
R2 0.948330398725 | 0.957339410462 | 0.934554746146 |0.933959090099
MAE 0.164821701865 | 0.146087555100 | 0.164012651553 | 0.178320681513
Degree 3:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.205645552810 ] 0.193170974883 | 0.250050009910 |0.248064133493
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0.957709906609

0.962684974462

0.937474992543

0.938464185673

MAE 0.135642152051 1 0.133084776897 10.160891533394 | 0.176436525171
Degree 4:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.206233199757 10.196277573161 |0.253933664239 |0.249087312706
R2 0.957467867317 10.961475114273 ]10.935517694166 | 0.937955510648
MAE 0.137017529412 | 0.135538296143 [ 0.165743781008 | 0.177457883947
Degree 5:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.207617533551 ] 0.188109565125 |0.252404796675 |0.243459959915
R2 0.956894959762 1 0.964614791508 | 0.936291818615 |0.940727247918
MAE 0.138723584089 | 0.126613644975 | 0.164449738500 | 0.169574898223
Degree 6:-
Error Current

Metric
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40A 45A 50A 60A
RMSE 0.204035295128 1 0.192962434206 | 0.248973038305 | 0.249053722833
R2 0.958369598341 | 0.962765498985 |0.938012426196 |0.937972243142
MAE 0.135149941818 ] 0.132223665531 | 0.158905892604 | 0.177484027333
Degree 7:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.206231810842 1 0.187112701449 |0.248591052542 |0.250033653187
R2 0.957468440196 | 0.964988836956 | 0.938202488595 |0.937483172273
MAE 0.137107114912 | 0.126192688492 | 0.158658594923 | 0.178427523078
Degree 8:-
Error Current
Metric

40A 45A 50A 60A
RMSE 0.205996579914 ] 0.186913950680 | 0.250532524627 |0.249762565095
R2 0.957565409063 | 0.965063175040 |0.937233454103 [ 0.937618661076
MAE 0.136121614675 10.125216421621 | 0.161687860071 ] 0.178169665331

Degree 9:-
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Error Current
Metric

40A 45A 50A 60A
RMSE 0.206375854836 1 0.193461336996 | 0.253160743382 10.251233872041
R2 0.957409006540 | 0.962572711087 |0.935909638010 [ 0.936881541539
MAE 0.137476199601 | 0.131813741665 | 0.164886502307 |0.179716391834
LSTM:

Table for Performance in case of charging:

Error Current
Metric

40A 45A 50A 60A
RMSE 0.342742386503 [ 0.502422332494 | 0.527558536624 | 0.961910117138
R? 0.993120516077 [ 0.990662777835 | 0.989705123731 | 0.987888394547
MAE 0.173379036838 [ 0.291018920655 | 0.346041830620 | 0.370003210320
Table for Performance in case of discharging:
Error Current
Metric

40A 45A 50A 60A
RMSE 0.309661595769 [ 0.407636375878 | 0.562765759471 | 0.776349582986
R? 0.995161027621 [0.994857159205 | 0.992715938415 | 0.993098315006
MAE 0.246384419321 [ 0.207762836428 | 0.173442373104 | 0.175605433060
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Algorithm Performance Graphs.
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4) 60A Charging:-
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7) 50A Discharging:-
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Parameter Performance Graphs:

For the actual values, we have taken only 100 points for charging and 150

points for discharging randomly so as to make the visualization of actual
and predicted points more distinct.
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3) 50A Charging:-
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6) 45A Discharging:-
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CONCLUSION

Upon training the Polynomial Regression model on the datasets and

calculating R* error, we observed that the best degree polynomial function

for each of the datasets w.r.t R? error are as follows:

1) 40A Charging = Degree 9 (0.962239479438)
2) 45A Charging = Degree 4 (0.955031625537)
3) 50A Charging = Degree 7 (0.939483202296)
4) 60A Charging = Degree 4 (0.934943426918)
5) 40A Discharging = Degree 6 (0.958369598341)
6) 45A Discharging = Degree 8 (0.965063175040)
7) 50A Discharging = Degree 7 (0.938202488595)
8) 60A Discharging = Degree 5 (0.940727247918)

In the case of LSTM, the best case R? error that we achieved was

0.995161027621 (40A Discharging dataset).

The results indicate that the LSTM model performs far better overall as
compared to the Polynomial Regression model for predicting the VRFB

stack temperature.

In the future, we plan on further optimizing the temperature with respect to

flow rate using these algorithms.
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